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Adaptive optics (AO) imaging methods allow the histological characteristics of retinal cell mosaics, such as
photoreceptors and retinal pigment epithelium (RPE) cells, to be studied in vivo. The high-resolution images
obtained with ophthalmic AO imaging devices are rich with information that is difficult and/or tedious to quantify
using manual methods. Thus, robust, automated analysis tools that can provide reproducible quantitative infor-
mation about the cellular mosaics under examination are required. Automated algorithms have been developed to
detect the position of individual photoreceptor cells; however, most of these methods are not well suited for char-
acterizing the RPE mosaic. We have developed an algorithm for RPE cell segmentation and show its performance
here on simulated and real fluorescence AO images of the RPE mosaic. Algorithm performance was compared to
manual cell identification and yielded better than 91% correspondence. This method can be used to segment
RPE cells for morphometric analysis of the RPE mosaic and speed the analysis of both healthy and diseased
RPE mosaics. © 2013 Optical Society of America

OCIS codes: (100.2000) Digital image processing; (100.2960) Image analysis; (100.4995) Pattern recogni-
tion, metrics; (110.1080) Active or adaptive optics; (170.4460) Ophthalmic optics and devices; (330.4300) Vision
system - noninvasive assessment.
http://dx.doi.org/10.1364/JOSAA.30.002595

1. INTRODUCTION
Adaptive optics (AO) retinal imaging methods allow micro-
scopic features, such as individual cells, to be examined in

vivo, and have become an important tool for the study of
retinal diseases [1–11]. The cone photoreceptor mosaic has
received the most attention by investigators using AO; cones
were the first cells to be imaged in the living eye and are the
most accessible to imaging [1,12]. Comparatively little work
has focused on retinal pigment epithelium (RPE) cells, which
are vital for the maintenance of visual function [13–16], and
are implicated in many retinal diseases, such as age-related
macular degeneration and cone-rod dystrophy [4,17–19].
The RPE is also a target for therapeutic interventions aimed
at restoring visual function, so the ability to examine RPE cell
morphology in vivo could be important for evaluating the ef-
ficacy of these therapies. Morgan et al. demonstrated in 2008
that the human RPE mosaic could be imaged using fluores-
cence AO imaging methods [6]. However, the RPE mosaic
has proved challenging for routine imaging in humans. New
methods developed at the University of Rochester have re-
cently improved the efficiency of fluorescence imaging of
the human RPE in diseased eyes [20]. Recent reports also
show that the RPE is accessible to imaging using dark field

imaging methods [21]. However, these technical achievements
improving our ability to image the RPE cell mosaic must be
coupled with robust analysis tools for large-scale meaningful
studies of in vivo RPE morphometry to occur.

Accurate detection and classification of patterns in bio-
medical images is central to identifying and monitoring tissue
damage, as well as quantifying its extent. The retinal surface
area of interest in clinical or scientific studies can include
areas that contain many hundreds to many thousands of indi-
vidual cells, making manual analysis methods impractical;
purely qualitative analysis methods are undesirable for numer-
ous reasons. Hence, it is necessary to have robust and reliable
automated methods for classifying and quantifying retinal
structures in high-resolution retinal images. Significant
progress has been made in this area, but nearly all of it has
focused on the development of tools for automatically local-
izing the position of individual photoreceptor cells [22–24].
Most methods developed to analyze cone mosaics are inap-
propriate for studying the RPE, as they seek to identify the
bright centers of photoreceptor cells, whereas our interest
is primarily in segmenting the fluorescent structure in RPE
images that defines the borders of adjacent RPE cells.
Chiu et al. have developed an algorithm for segmenting
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RPE cells in confocal microscopy images [23], but we imple-
mented this algorithm and found that it did not perform well
on fluorescence AO images due to their higher noise levels. A
closed cell segmentation approach is desirable not only
because it is important to know how many RPE cells
there are in a given retinal area, but also because their
morphometry—the shape, size, and spatial arrangement of
RPE cells—has been shown in postmortem histological stud-
ies to change with aging and disease [16,25–27]. These
changes in morphometry may precede cell death and thus
it is possible that morphometric changes could be measured
before a decrease in the number of cells is observed.

In digital image processing, the most common hurdles to
overcome are illumination, scale, and rotation, which are
all present in images obtained using AO scanning light oph-
thalmoscopy (AOSLO). Illumination and scale problems arise
from the properties of the optical system [28] and from the
characteristics of the microscopic features themselves.
Rotation between small AO imaging fields occurs from eye
rotation. And just as the brightness of individual photorecep-
tors can vary in an AO image [5,8,10,29], so too can the fluo-
rescence of individual RPE cells. Since the structure of RPE
cells in fluorescence AOSLO images is defined by the fluores-
cence of individual lipofuscin (and melanolipofuscin) gran-
ules within the cell [3,6,19], the shape, size, and distribution
of these granules cause variability in the fluorescence of
different parts of the cell. In addition, as with other cellular
mosaics in the retina, such as the photoreceptors, the RPE
cell shape and size vary as a function of eccentricity from
the fovea [6,13,14,30,31].

Our approach is related to watershed metallographic and
histological image segmentation methods [32–34]. We test
our algorithm here on both synthetic and real high-resolution
images obtained in both humans and monkeys using several
different AOSLO instruments.

2. METHODS
A. Algorithm
The algorithm consists of several stages: (1) smoothing,
(2) erosion, (3) edge detection, (4) edge correction, (5) binar-
ization, and (6) shrinking. A schematic diagram of the algo-
rithm is shown in Fig. 1. It was implemented in MATLAB
(The MathWorks, Inc., Natick, Massachusetts), using several
functions from the Image Processing Toolbox.

Smoothing reduces the noise level in each image; this stage
is defined by the convolution f �x; y� � g�x; y� of image f �x; y�
and the kernel g�x; y�. Let g�x; y� be a circular mean filter; the
kernel is shown in Fig. 2(a), [32]. The size of the kernel was
selected based on the size of the bright fluorescent zones de-
fining the margin of each cell, with the aim of reducing the
noise level without eliminating the cellular structure. If the
kernel is too small, the noise level is not reduced significantly,
and if the kernel is too large, the cellular structure is elimi-
nated. Figure 3(b) shows the result of the smoothing on
the image shown in Fig. 3(a). Smoothing was accomplished
through the MATLAB function conv2. It should be noted
that smoothing results in edge artifacts; this problem was
avoided by using large images and cropping the borders after
segmentation.

Erosion is the morphological operation described by Serra
[34]; it is defined as a⊖b. Let a be the image and let b be the

structuring element shown in Fig. 2(b). The structuring
element was designed with the goal of shrinking the bright
fluorescent zones in the image that define the contours of
each RPE cell. Figure 3(c) shows the result of this stage on
the image shown in Fig. 3(b). Erosion was implemented using
the MATLAB function imerode.

Edge detection used the convolution of the image with a
Mexican-hat kernel shown in Fig. 2(c). The kernel closely re-
sembles the difference of two Gaussians of Wilson and Giese
[33,35,36]. The Mexican-hat kernel was used to detect cell
edges. We also tested Laplacian high-pass, Sobel, and Canny
filters [33], but found that the Mexican-hat kernel was the
most effective. Figure 3(d) shows the result of this stage on
the image shown in Fig. 3(c). Edge detection was accom-
plished using the MATLAB function conv2.

Edge correction uses the morphological operation closing
a • b � �a⊕b�⊖b, which is the combination of a dilation
followed by an erosion using the same structuring element

Fig. 1. Schematic representation of the algorithm.
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[34,37]; it tends to close bright zones and remove dark details
from an image with respect to the size and shape of the struc-
turing element [32]. Edge correction uses the structuring
element shown in Fig. 2(d); it was designed to correct the
edges on the horizontal and vertical directions. Figure 3(e)
shows the result of this stage on the image shown in
Fig. 3(d). Edge correction was accomplished through the
MATLAB function imclose.

Binarization is a threshold operation; after using the
Mexican-hat kernel, the image contains pixel values below
zero, where the zero crossings represent the edge of the cell.
Binarization sets all values below one to zero and all values
greater than or equal to 1 to 1, as denoted by Eq. (1).
Figure 3(f) shows the result of this stage on the image shown
in Fig. 3(e):

g�x; y� �
�
1 ∀ f �x; y� ≥ 1
0 ∀ f �x; y� < 1

: (1)

Shrinking is the final stage of the algorithm; it is based on
the mathematical morphology operators described by Serra
[34] and implemented with the MATLAB function bwmorph,
employing the “shrink” operation. The operation is repeated
until the image no longer changes. Shrinking is used to obtain
a single pixel contour around each RPE cell. Isolated pixels
are then removed using the MATLAB function bwmorph, with
the “clean” operation. Figure 3(g) shows the result of this final
stage on the image shown in Fig. 3(f).

Many fluorescence AO images of the RPE contain dark
hypo fluorescent zones, often due to overlying blood vessels
or retinal pathology; in some cases it is desirable to remove
these areas. Due to the variety of intensity distributions found
in fluorescence AO images, we have found that a single
method to remove dark zones and blood vessels does not
work for all images. Therefore, we propose three different
thresholding methods: Huang, Zack, and Otsu [38–40]. Each
is appropriate for a different distribution of image intensities
that can be determined by inspecting the grayscale histogram.
The Huang method was used for the images shown in
Fig. 5(c), 5(d) because they exhibit bimodal histograms.
For images with dark zones and/or blood vessels without a
bimodal histogram, we recommend using one of the other
two methods to eliminate these areas. When the image is
bright, we suggest using the Otsu method, whereas when
the image is dark, we suggest employing the Zack method.
The Huang method is based on minimizing the measurement
of fuzziness. For this method, thresholding is applied using the
Shanon function and the measure of Yager with the Hamming
metric [38]. Zack thresholding is based on normalizing the
height and dynamic range of the intensity histogram and does
not use a fixed offset [39]. The Otsu method used discriminant
criterion to maximize the separability of the resultant classes
in gray levels [40]. Therefore, to eliminate small dark zones
created by thresholding, binary dilations are performed 10

Fig. 2. Kernels used in the algorithm: (a) mean circular filter,
(b) structuring element for erosion, (c) Mexican-hat Kernel, and
(d) structuring element for edge correction.

Fig. 3. Stages of the algorithm, human image: (a) original, (b) smoothing, (c) erosion, (d) edge detection, (e) edge correction, (f) binarization, and
(g) shrinking. Scale bar: 50 μm.

Rangel-Fonseca et al. Vol. 30, No. 12 / December 2013 / J. Opt. Soc. Am. A 2597



times on the image, using a N8 structuring element. Dilation
was implemented with the MATLAB function imdilate.

B. Synthetic Test Images
To validate the algorithm, we tested it on images devoid of
RPE structure and on images containing RPE-like structures
with known geometry. We tested the algorithm on three differ-
ent types of synthetic images: (1) white noise, (2) a simulated
perfect RPE mosaic, and (3) a simulated noisy RPE mosaic.
All synthetic images were created in MATLAB. The white
noise image was created using the rand MATLAB function
to assign a random value to each pixel in the image. The si-
mulated perfect mosaic was created by generating a quasi-
symmetric hexagonal array. The dimensions of the array
and pixel sampling were chosen to be similar to those found
in real images. The spacing of the pseudocells across the im-
age varied from 12 to 23 pixels, similar to the spacing found in
the human and monkey images shown later. The simulated
noisy mosaic was generated by convolving the simulated per-
fect mosaic with a 2D Gaussian function of 25 × 25 pixels in
size and σ � 3 pixels to blur the edges of the simulated cells.
Several randomized elliptical spots, of varying intensity, using
a function described elsewhere [41], were also added to the
image to simulate the structure of fluorescence seen in real
images. Finally, a white Gaussian noise with SNR � 5 dB
per sample was applied to add noise to the image; it was
accomplished through the awgn MATLAB function.

C. Fluorescence AOSLO images
We used several different fluorescence AOSLO images ob-
tained for current and previous experiments in the Center
for Visual Science at the University of Rochester to test
the algorithm. Images were obtained on three different fluo-
rescence AOSLO systems. For comparison to manual cell
counting measurements, we used images and measurements
from a monkey RPE mosaic, published previously by Morgan
and co-workers, using methods described previously [3,6,9].
This data set represents the largest and most well-
characterized RPEmosaic imaged using fluorescence AOSLO.
We compared the performance of the algorithm to the mea-
surements obtained by Morgan et al. by using our algorithm
to analyze the properties of the cell mosaic in the exact same
areas for which they presented their data from the image
shown in Fig. 1 and Table 1 of their paper [6]. Comparisons
were made to the raw data, which we obtained from the au-
thors. To compare performance on images of the RPE from
the monkey that have somewhat different appearance (sub-
jectively sharper, higher contrast, and less noisy), we used im-
ages obtained more recently by Masella et al. using similar
methods but a smaller confocal aperture. We also evaluated
the performance of the algorithm on images obtained recently
from human eyes using methods we describe elsewhere [20].
Data shown from human participants are from experiments
that were approved by the Research Subjects Review Board
at the University of Rochester and adhered to the tenets of the

Table 1. Comparison of Algorithmic Segmentation and Manual Counting of RPE Cells in Monkey 320 from

Morgan et al. [6]

Region (°)a
Number
of Cellsb

Difference of
Number
of Cellsc

Cell Density
(cells∕mm2)b

Difference of
Cell Density
(cells∕mm2)c

Area Mean
(μm2)b

Difference
of Area (μm2)c NND (μm)d

Fovea 211 30 4440 822 208 −18 13.33� 1.51
1 T 230 4 4840 270 189 7 13.18� 1.52
2 T 202 10 4250 273 224 −3 14.20� 1.32
3 T 192 1 4040 209 227 8 14.63� 1.47
4 T 181 1 3809 135 242 12 14.97� 1.79
1 N 238 26 5008 697 178 −3 12.91� 1.44
2 N 227 3 4777 301 192 5 13.42� 1.40
3 N 204 19 4293 444 212 −4 13.81� 1.70
4 N 179 21 3767 740 255 −34 14.68� 1.97
1 S 234 30 4924 558 196 −13 13.26� 1.72
2 S 218 34 4587 977 202 −22 13.27� 1.62
3 S 198 42 4166 1147 209 −21 13.37� 2.07
1 I 236 8 4966 267 184 7 13.10� 1.36
2 I 221 16 4650 377 194 5 13.14� 1.53
3 I 180 19 3788 1184 244 −42 13.87� 2.15
1 T, 1 S 227 27 4777 694 196 −13 13.21� 1.62
2 T, 2 S 193 17 4061 528 226 −8 14.25� 1.69
3 T, 3 S 185 3 3893 197 249 −4 14.68� 2.12
1 T, 1 I 243 6 5113 159 176 14 12.99� 1.30
2 T, 2 I 180 31 3788 780 239 −21 14.55� 1.76
3 T, 3 I 160 16 3367 570 277 −23 15.10� 2.56
1 N, 1 S 216 28 4545 1182 203 −28 13.21� 1.71
2 N, 2 S 214 26 4503 669 207 −14 13.55� 1.81
3 N, 3 S 179 47 3767 988 238 −28 14.27� 1.80
1 N, 1 I 240 28 5050 357 181 4 12.90� 1.66
2 N, 2 I 195 24 4103 539 224 −9 13.77� 1.65
3 N, 3 I 191 4 4019 728 221 −10 14.32� 1.77

aLocation of the center of the region as measured in degrees from the fovea in the direction temporal (T), nasal (N), superior (S), and inferior (I).
bCalculated with the proposed algorithm.
cDifference with respect to that reported in [6].
dMean � SD.
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Declaration of Helsinki. Pixel dimensions were calculated by
using a Gullstrand no. 2 simplified relaxed schematic eye
model, scaled by the axial length of the eye.

To test the repeatability of the algorithm, we used images
obtained in monkeys from the same retinal area, taken at dif-
ferent time points over the course of 1 h (∼20 min between
each video). Additionally, we wanted to see how varying the
level of noise in real images altered algorithm performance.
To examine this, we used images obtained at the same retinal
location, but with different excitation source power levels.
After image segmentation, the centroid and area were calcu-
lated for each cell; these parameters were used to calculate
the cell area and nearest neighbor distance (NND).

3. RESULTS
Figure 4 shows the three different types of synthetic images in
the first row, the result of the algorithm in the second row, and
histograms of cell areas in the third row. For the case of the
image containing no cellular structure (i.e., white noise) in
Fig. 4(a), the algorithm produced the result shown in
Fig. 4(d), which does not have the characteristic hexagonal
appearance of a real RPE mosaic. The size and shape of
the segmented regions vary in a random way, with the mean
area � 109.7 pixels and standard deviation �SD� � 55.9 pix-
els. For the perfect simulated mosaic shown in Fig. 4(b),
the algorithm correctly segmented all of the pseudocells in
Fig. 4(e); the mean area was 176.4 pixels and the SD of area

was 36.7 pixels. For the noisy simulated mosaic shown in
Fig. 4(c), the algorithm segmented almost all of the pseudo-
cells (279∕287 cells; 97.21%); in Fig. 4(f), the mean area
was 177.5 pixels and the SD of area was 42.8 pixels. However,
the algorithm failed to segment the pseudocell borders in four
regions where the cell borders are poorly defined.

Figure 5 shows the results obtained on real images. For im-
ages shown in Figs. 5(a), 5(c), and 5(d), the Huang method
was used to segment the blood vessel area. Figure 5(b) shows
the RPE mosaic from the foveal center of monkey 320 from
[5]. Statistical analysis of the segmented image shown in
Fig. 5(b) is listed in the first row of Table 1. Table 1 also in-
cludes the statistics for the other 25 images (not shown) that
we analyzed, which correspond to the areas measured in [6],
as well as the difference between our measurements and
those obtained by manual cell identification [6].

Figure 6 shows the results of the segmentation algorithm on
three images of the same retinal area obtained at different
time points. The number of cells found in each image varied
by a maximum of 11 cells. Cell statistics computed from these
areas (shown in Table 2) were similar. Figure 7 shows the
results of the segmentation algorithm on the five images
obtained using different excitation source power levels.
Statistics for the segmented cells are shown in Table 2. Cell
number decreased as excitation power increased for the four
lowest power settings; a comparable number of cells were
segmented in the two images obtained with the highest
excitation source powers [Figs. 7(e) and 7(f)].

Fig. 4. Synthetic images (top row), corresponding segmentation images (middle row), and cell area histograms (bottom row). Histograms were
generated from the cell areas computed from the segmentation images. (a), (d), (g) White noise, (b), (e), (h) hexagonal array, and (c), (f), (i) hex-
agonal array with SNR � 5 db. The pseudocells’ diameters are between 12 and 24 pixels.
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4. DISCUSSION
A. Performance on Simulated Images
The results from white noise show that, as with all image
processing tools, care must be used in its application or spu-
rious results can be obtained from noise. However, we feel
that the results from the white noise example show that noise
generates patterns that are very different, both qualitatively
and quantitatively, from those obtained from either the simu-
lated or real RPE mosaics and do not limit the utility of the
algorithm. Qualitatively, it can be seen that the characteristic
hexagonal mosaic is not observed in the white noise image.

Quantitatively, we can see from the area of the pseudocells
plotted in the histogram in Fig. 4 that the noise image resulted
in a skewed distribution of cell sizes, with a greater number of
smaller cells (resulting in the smaller mean area reported
above), and a long tail that extended into the larger bins.
Results from the simulated perfect mosaic show that, as ex-
pected, for a perfect image, perfect segmentation occurs. The
histogram of cell areas shows a normal distribution of cell
areas about the area mean. Unfortunately, we do not expect
to encounter such images in fluorescence AOSLO. Such
high-contrast images are usually only obtained in confocal

Fig. 5. RPE cells mosaic and corresponding segmentation: (a), (e) Monkey 526 at approximately 10° nasal-superior, (b), (f) monkey 320 at fovea,
(c), (g) human at approximately 6.75° superior and 2.5° temporal, and (d), (h) human at approximately 1.75° superior and 10° temporal. Scale bar:
50 μm.

Fig. 6. Macaque RPE cells mosaic and corresponding segmentation at approximately 2° temporal, 7° superior: (a), (d) time point 1; (b), (e) time
point 2; (c), (f) time point 3. Scale bar: 50 μm.
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microscopy and can be segmented using other algorithms,
such as the one proposed by Chiu et al. [23]. Results from
the simulated noisy mosaic might represent a best-case imag-
ing scenario. Here we see that as with most automated analy-
sis tools there will be some errors even on the best images. In
this case, we see that some pseudocells incorrectly have twice
the area of the mean, representing two cells that were falsely
identified as one. This occurs when the borders between two
cells are indistinct; this case often arises in real images due to
incomplete or nonuniform fluorescence along the cell margin.
A few missed cells results in a negligible change in mean cell
area, cell density, or NDD, and for most purposes these errors
might be acceptable. However, when there is the expectation
of a normal regular mosaic, these errors in segmentation
could be automatically detected by computing the area of
all of the cells and applying a threshold to determine those
cells that are double or triple the mean size, representing
two or three cells, respectively.

B. Performance on Real Images
Compared to manual cell identification, the algorithm found
19 fewer cells, on average, in the 26 locations examined for
monkey 320 from [6]. At all locations compared, the algorithm
segmented fewer cells than were identified manually. This dis-
crepancy is due to algorithm failure in cases in which there
was either incomplete fluorescence or hypo fluorescence of

the polygonal intensity signal that defines each cell. The algo-
rithm fails when cell borders are not distinct, as it did in the
simulated noisy mosaic image. However, if a border is com-
pletely missing, then it is not surprising that the algorithm fails
to detect it. As stated in the introduction, RPE fluorescence of
individual cells is variable and can depend on the spatial ar-
rangement and state of the lipofuscin granules in the cell. In
some cases, a border may be indistinct due to a lack of lipo-
fuscin, or so hypo fluorescent that it cannot be detected by the
algorithm. The result is the same in either case; multiple cells
are segmented as one. The human brain is very good at infer-
ring the presence of two cells despite an absent or indistinct
border; thus the manual counts always identified more cells.
This absolute systematic error between methods is demon-
strated in the Bland–Altman plot shown in Fig. 8 [42].

One solution to this is to add an analysis step that computes
the area of each cell and displays those cells that are greater
than 2 SD above the mean to the experimenter, so that those
cells may be segmented manually. However, overlaying the
binary segmentation image on the original image in a software
program such as Adobe Photoshop (Adobe Systems Inc., San
Jose, California) or GIMP (GNU Image Manipulation Pro-
gram) is usually all that is needed to identify cell margins that
were not segmented; the pencil tool can then be used to trace
the inferred cell border. Visual inspection of results and com-
parison to original imagery is important for any automated

Fig. 7. Macaque RPE cells mosaic at different exposures and corresponding segmentation at approximately 2° temporal, 9° superior: (a), (g) 5 μW,
(b), (h) 12 μW, (c), (i) 16 μW, (d), (j) 20 μW, (e), (k) 30 μW, and (f), (l) 47 μW. Scale bar: 50 μm.

Table 2. Statistics of RPE Cells from Monkey 526 in Figs. 6 and 7

Figure Number of Cellsa Cell Density (cells∕mm2)a Area Mean (μm2)b NND (μm)c

6(d) 138 3629 216.27 13.24� 3.44
6(e) 149 3918 204.76 13.12� 2.65
6(f) 143 3760 209.79 13.15� 3.01
7(g) 235 6180 121.34 10.05� 2.23
7(h) 205 5391 144.65 10.74� 2.45
7(i) 197 5180 146.90 10.74� 2.62
7(j) 189 4970 158.39 11.37� 2.69
7(k) 155 4076 196.91 12.71� 3.28
7(l) 149 3918 202.07 12.57� 3.05

aCalculated with the proposed algorithm.
bAverage area from cells.
cMean � SD.
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image analysis tool; just as the automated cone counting algo-
rithms in use by investigators require manual correction, so
too will that step be necessary for this tool.

Analysis of images obtained at the same retinal location at
different time points (Fig. 6) showed that the algorithm is
repeatable if the signal-to-noise ratio (SNR) of the images
is similar. This is further demonstrated by the images shown
in Fig. 7, as we see a similar number of cells segmented in the
two images obtained with the highest excitation source
power. Algorithm performance will suffer on noisier images,
as is demonstrated from the results obtained using the lower
power levels in Fig. 7.

C. Comparison to Manual Identification of Cell Centers
A major advantage of this approach is that it is much faster
than manual identification. It took ∼6 s to segment the entire
RPE montage from Fig. 1 of [6]; this is ∼6000 times faster than
the 10 h it took Dr. Morgan to manually identify the 14,335

cells [43]. This savings in time can allow for many more
images to be analyzed (even when adding time for manual cor-
rection), and will facilitate analysis of larger data sets than are
manageable using purely manual methods. Now, the manual
counts are slightly more accurate, in terms of identifying
nearly every cell, as the trained eye can infer that a cell is there
even if one of the borders is indistinct. However, it is clear that
this level of precision is probably not necessary for some pur-
poses, as similar cell statistics can be obtained (Table 1). A
second and likely more important advantage of our approach
is that this method provides more information; it not only ob-
tains the information about where the cell is, but also allows
other morphometric parameters to be computed. This may not
be critical for evaluating the RPE mosaic in healthy young
eyes, where a well-tessellated triangular packing is expected,
but we feel it is essential for evaluating the structure of the
RPE in diseased eyes [20]. Voronoi analysis can estimate these
parameters for a well-tessellated area; however, there are
some important differences between a Voronoi diagram
and true cell segmentation. This is illustrated in Fig. 9, which
compares the cells segmented in our simulated mosaic using
our method to a Voronoi diagram of the same cells based upon
the known center of each hexagon. Now, suppose some cells
are lost—the cells shown in red in Fig. 9(a); the Voronoi dia-
gram cannot faithfully represent this morphology [Fig. 9(c)].
However, our cell segmentation algorithm will correctly re-
present the shape of the areas defined by the remaining sur-
rounding cells [Fig. 9(e)]. This is due to the fact that Voronoi
domains must be convex. This results in the spurious triangles
that now appear at the location of the missing cell in the cor-
responding Voronoi diagram shown in Fig. 9(c). Even more
problematic is representing patches of cell loss or RPE cells
that might be surrounded by several lost cells. This is illus-
trated by the simulated RPE mosaic shown in Fig. 9(h): the
Voronoi diagram is incomplete, with most of the domains
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Fig. 8. Bland–Altman plot shows that there is an absolute systematic
error between the proposed algorithm and manual cell identification.
This is due to the fact that the human can infer the presence of two or
more cells when their borders are indistinct or absent, but the
algorithm cannot.

Fig. 9. Comparison of cells segmentation using Voronoi diagram and the proposed algorithm. (a) Simulated RPE mosaic supposing lost cells in
red, (b) centroids from (a), (c) Voronoi diagram from (b), (d) simulated mosaic with lost cells, (e) segmentation from (d) using proposed algorithm,
(f) simulated RPE mosaic surrounded by several lost cells, (g) centroids from (f), (h) Voronoi diagram from (g), and (i) segmentation from (f) using
proposed algorithm. Magenta, blue, green, yellow, and red synthetic cells have 4, 5, 6, 7, and 8 Voronoi neighbors, respectively.
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unable to be filled as the surrounding area is devoid of points.
Since the edges of a Voronoi diagram are defined by the points
that bound it, and in this case there are no bounding points, it
fails to represent the data faithfully. Again, we see that the
proposed algorithm [Fig. 9(i)] will faithfully represent this
morphology [Fig. 9(f)] when the Voronoi method fails.
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